
SANDIA REPORT
SAND97-0176 ● UC-705
Unlimited Release

8 Printed February 1997

h

Virtual Actors and Avatars in a Flexible
User-Determined-Scenario Environment

Dan M. Shawver

SF29(IOQ(8-81 )



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specfllc commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
- directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. &X 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port ROyd Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1



,

.

SAND97-0176 Distribution
Unlimited Release Category UC-705

Printed February 1997

Virtual Actors and Avatars in a
Flexible User-Determined-Scenario Environment

Dan M. Shawver

Sandia National Laboratories
P.O. BOX5800

Albuquerque, NM 87185-0978

Abstract

VRaptor, aVRsystem for situational training that uses trainer-

defined scenarios isdescribed. The trainee isrepresentedbyan avatar;

the rest of thevirtual world ispopulated by virtual actors, which are

under the control of trainer-defined scripts. The scripts allow reactive

behaviors, but the trainer can control the overall scenario. This type of

training system may be very useful in supplementing physical training.

1This paper has been previously published in the Proceedings of the IEEE Virtual
Reality Annual International Symposium, Albuquerque, NM, March 1-5, 1997. This
report constitutes the final LDRD report for the LDRD project titled “Interactive Control
of Virtual Actors for Simulation and Training.”
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1 Introduction

This paper presents VRaptor (VR assault @arming, iraining, ~r Iehersal),

a VR system for situational training. VRaptor lets the trainer define and

redefine scenarios during the training session. The trainee is represented by

an avatar; the rest of the virtual world is populated by virtual actors, which

are under the control of trainer-defined scripts. The scripts allow reactive
behaviors, but the trainer can control the overall scenario.

VRaptor supports situational training, a type of training in which stu-

dents learn to handle multiple situations or scenarios, through simulation
in a VR environment. The appeal of such training systems is that the stu-

dents can experience and develop effective responses for situations they would

otherwise have no opportunist y to practice. Security forces and emergency

response forces are examples of professional groups that could benefit from

this type of training. A hostage rescue scenario, an example of the type of
training scenario we can support, has been developed for our current system
and is described in Section 3.

Since control of behaviors presupposes an appropriate representation of
behavior and means of structuring complex behaviors, we survey related work
on behavior simulation in Section 2.

In the Virtual Reality/ Intelligent Simulation (VR/IS) lab, our basic VR

system [16] allows multiple human participants to appear in embodied form

(as avatars) within a common, shared virtual environment. The virtual envi-
ronment may also cent ain virtual actors. Using this infrastructure, we have
developed the VRaptor system. VRaptor adds oversight and session con-
trol by a trainer, through a workstation interface. This interface, described
in Section 4, allows selection of roles and actions for the individual virtual
actors, and placement of them in the scene.

In Section 5 we present the architecture of the simulation component of

VRaptor, and in Section 6 discuss the representation of scenarios in terms of

scripts and tasks.

2 Related

Since our focus in

work

this
actors, we survey work

research is on the scripting and control of virtual
toward building animations or behaviors which are
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either automated or reactive, and especially work which offers hope of allow-
ing realtime implementations.

2.1 Behavioral animation

Behavioral animation has developed from the early work of Reynolds [15], on

flocking and schooling behaviors of groups of simulated actors; recent work

in this vein includes that of Tu and Terzopoulos [17]. Systems that deal

with smaller groups, or individual behaviors, are reviewed in the following

sections.

2.2 Ethologically-based approaches

Ethologically-based (or biologically-based) approaches deal with action se-
lection mechanisms. Since intelligent behavior should emerge naturally in
this approach, some form of reactive planning may be used. An approach

that included reactive planning in a system providing simulation capabilities

was developed by Maes [7], and subsequently extended into a distributed
form-in the work of Zeltzer and Johnson [18, 19]. Maes has demonstrated a
system called ALIVE which provides simulated actors responding to users’
gestures (see Maes et al [8]). Blumberg [3] describes a ethologically-based
system which is embedded in the ALIVE framework.

2.3 Other approaches

Alternative approaches for simulation of reactive, situated actors have also

been developed by Bates and Loyall [6], Becket and Badler [2], the Thal-
manns and their group [11], and Booth et al [4]. The system of Bates and
Loyall does not do any actual planning, although it does allow a range of ac-
tions to be reactively invoked, and supports the implementation of simulated
simple actors that have an extensive repertoire of behaviors and include sim-
ulated emotional states. The system appears to make programming action
sequences, as behavior segments, relatively straightforward. The system of
Becket and Badler uses a network of elements (PaT Nets) to get reactivity.
There is a higher-level, nonreactive planning component. The Thalmanm
have explored some behavioral features in conjunction with synthetic actors,
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and they use a reactive selection of (fine-grain) strategies in association with
synthetic vision in the cited work.

The work of Booth et al proposes a design for a state machine engine,
which hierarchically combines state machines and constraint resolution mech-

anisms. This mechanism is described more fully in Ahmad et al [1].

In general, systems such as those developed by Zeltzer and Johnson, Bates
and Loyall, and Becket and Badler assume an underlying stratum that deals
with continuous, feedback-controlled domains, and provides a set of con-

stituent actions (perhaps constituted from smaller primitive actions). The
set of constituent actions are invoked by the reactive planning component.

That is, these authors separate the creation of single, continuous actions
from the selection and invocation of those actions. Nilsson [9, 10] combines

both aspects of action in one formalism, called teleo-reactive programs. Mul-
tiple levels of more detailed specification are provided through procedural

abstraction.

2.4 Individual behaviors and expressive movement

Recent work by Perlin [12, 13] has shown that to an interesting extent, rel-
atively simple kinematic techniques can create movement that is both nat-

ural and expressive, the latter being made apparent through the example
of a dancer figure animated by his techniques. More recent work by Per-
lin and Goldberg [14] has extended their work into multiple figures using a

distributed system.

3 Testbed scenario

Hostage rescue, our testbed scenario, is the sort of operation an organization

such as the FBI Hostage Rescue Team is called upon to perform. For a
simple initial capability, we assume the rescue should take place in a single
room. This type of operation is called a room clearing. Traditionally, training
of response teams for such scenarios involves the use of a “shoothouse”, a
physical facility that models typical rooms and room arrangements, and is
populated with manikins or paper cartoon drawings for the adversaries. Such
facilities lack the flexibility and limit the degree of interesting interaction
(the manikins may move only in simple ways, if at all). Our shoothouse
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scenario exhibits an alternative in which figures can move through a range of

programmable actions. In addition, the physical facility is rather expensive to
operate; our VR system should provide a more cost effective training option.

(However, we do not foresee entirely replacing the physical shoothouse with
a virtual one in the near future. )

3.1 Components of a room clearing operation

A room clearing operation proceeds in the following steps:

1. Breach through door(s) or wall to create an entry into the room.

2. Toss a stun grenade (or j?ashbang) into the middle of the room. This

creates a diversion, and as the name implies, stuns the inhabitants of
the room with blast and light.

3. Forces enter the room in pairs, each member of the pair to cover either
the left or right side of the room from the breached opening. Each

steps into the room along the wall and then forward. Thus each can
clear his own section of the room.

4. Commands are given to the room occupants to “get down”, and not
resist.

5. Shoot armed adversaries.

The total attack time may be only a few seconds for a single room.

3.2 Training for a room clearing operation using VR

There will be one or more trainees who will be practicing the room clearing

operation; these will be the intervention forces. The trainees will be using
immersive VR.

The trainers will control the training session by setting up scenarios and
monitoring the trainees’ performance. The trainers will use a multiple-
windows workstation display that provides a 3D graphics overview of the
virtual environment (i.e. the room) and a user interface to define the sce-

nario and start the session.
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Figurel: Allowed Virtual Actor Locations

The room occupants will be simulated using virtual actors. These actors
will carry out roles and actions assigned by the trainer, subject to reactive
changes as the scenario proceeds, such as an actor getting shot.

4 VRaptor user interfaces

4.I. - The trainer’s interface

The user interface for the trainer consists of a 3D viewing window of the
virtual environment and a set of menus. Using the menus, the trainer can

control the placement of the actors in the room, assign them roles of either
terrorist or hostage, and select scripts for each actor. The scripts are subject
to constraints of applicability to the current position and pose of the figure.
The menu choices adjust dynamically to reflect the current actor placements

and scenario. Fig. 1 shows possible starting locations for the virtual actors.

Views of the actors from within the room are shown in Figures 2 and 3.

Typical menu choices for the actors’ responses when the shooting starts are:

. give up and put hands in air, then on head

● dive for the floor and give up

. do nothing – i.e. dazed

. fight (if adversary)

Except where noted, the actor may be either a hostage or an adversary.

6



.

Figure 2: Virtual Actors in Room

Figure 3: Another View of Actors
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4.2 The trainee’s interface

Thetrainee isimmersed in the scene. Thetrainee isprovided with a Head-
Mounted Display (HMD)2 and views the scene from the eye point of the

appropriate avatar. The trainee holds a weapon which is currently aBaretta

9mm replica instrumented to detect trigger pulls and clip insertion or re-
moval. This weapon provides the weight and feel of a real Baretta, but

is lacking the recoil. The headmount and gun each have an electromagnetic
tracker mounted on it, and in addition, electromagnetic trackers are mounted
on the hand not holding the gun, as well as the lower back.

5 Virtual actor system

The virtual actor simulation is a distributed set

There are two types:

1. An actor/scenario controller component

2.- A puppet server component

of cooperating components.

The simulation requires one actor/scenario component for the application,
and one puppet/server component for each virtual actor. Basic supporting
behaviors are installed in the lower-level (’puppet server’) support modules.
Higher-level behaviors appear as tasks dispatched on an actor-specific basis

(see Sec. 6).

5.1 The actor/scenario controller

The actor/scenario controller manages all the actors and tracks the state
of the simulated world. Higher-level behaviors are programmed as tasks in
this component. These tasks are determined by a trainer using the menu

system. Each actor is represented in the controller component by an object,
which communicates to the appropriate puppet server for that actor. The

controller sends commands to the puppet server, which carries out the com-
mand by animating the figure of the actor appropriately. Figure 4 illustrates
this concept. This figure shows two actors, but in general there can be many.

2We have been using the 01 Products PT-01 HMD
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Figure 4: Virtual Actor Components

The appropriate components (and processes) would be replicated for each ac-
tor. The actor/scenario controller implementation uses the Umbel Designer3
environment. This environment allows an object-oriented design approach.

The actor/scenario controller contains a component which evaluates the

gun position and orientation at trigger pull event time to determine which
(if any) actors were hit. When an actor is hit, the actor/scenario controller
overrides the current activity of that actor to force an appropriate response

to the hit; e.g. the actor falls dead in a manner appropriate to its current

position.

5.2 The puppet server

The puppet server component uses the NYU kpl language interpreter modi-

fied to provide 1/0 that is compatible with the VR/IS system (see Sec. 7.3). It
runs kpl code rewritten to extend Ken Perlin’s original” dancer” code [12, 13]
with new behaviors and with techniques for building more elaborate behav-

iors through chaining simple behavior elements. Commands are sent from

3A product of Inflorescence, Inc.
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the actor/scenario controller by TCP/IP connections to the specific puppet

server through an intermediate proxy for that puppet server (not shown in
Fig. 4). This indirect route accommodates a lower-level menu interface to the
individual puppet server for development of new basic behaviors. (Perlin’s

original interface creates tcl/tk menus; essentially the same kind of code

interfaces with the proxy. )

6 Scripts and multitasking

Central to our research is provision of user-manipulatable scripting. To pro-
vide this, we use the task abstraction at the actor/scenario controller level.
The mapping of script to tasks is one-to-many; multiple concurrent tasks

may be required in general to realize all aspects of a particular script. For

simple cases, one task may do.
There are also once-per-timestep condition checks taking place. These

checks are a type of callback procedure registered with the simulation control
mechanism of the actor/scenario controller. These check procedures can set
varia-bles, suspend or terminate a task, or signal a semaphore to wake up a
task. An example of a task is given in figure 5.

6.1 Tasks and threads of control

We use Umbel Designer to provide a simulation-time task capability. Tasks
have the ability to consume simulated time, while procedures are (conceptu-
ally at least) instantaneous. This task abstraction allows for both sequencing

actions and pausing for either a specified delay time or until some condition is
satisfied. One task can call another, which causes the calling task to wait for
completion of the called task. In addition, tasks can be started so that they
run asynchronously with the caller. Generally when a task terminates, at the

end of its code block, the thread of control running that task terminates. In
the case that the task was called from another task, the calling task resumes.

Tasks are implemented in terms of simulated time, but we constrain the

simulated time to match real time. Obviously this can only be done if the
real time required to do the tasks’ computation is not too great. Thus run-
time efficiency can be a major issue. This is somewhat alleviated in our

architecture by having the division into large-grain high level control on the
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part of the actor/scenario controller and the fine-grain control on the part of

the puppet servers. The latter run in parallel with the tasking computation.

6.2 Task dispatching

Tasks must be dispatched based on both the particular actor involved and his
assigned script. In addition, overall scenario control may require one or more
tasks to control scenario startup and monitor progress through the scenario.
For an example, see Figure 5. The task terrorist. sitting_ fight can be
part of an actor’s assigned script. It is called only after the main simulation

task has caused the flashbang to occur. Hence the timing in this task is
relative to that occurrence. (The procedure calls that refer to the actor’s
puppet send control messages to the puppet server for this actor.) Should
the actor controlled by this task be shot, the task will be not be allowed
to continue controlling the actor, and an appropriate dying action will be

invoked from the puppet server for the actor.

7’ -VR environment modules

Our current VR environment combines different types of simulation modules
with specialized display and sensor-input modules in a distributed architec-
ture. The term modules here means separate executable, with each typically
running as a single Unix process, but frequently with multiple threads of con-
trol.

1.

2.

3.

4.

The module types include the following:

The VR Station display

Polhemus tracker input module.

An avatar driver

Virtual actor modules as described in Sec 5.

The first three types of modules above will be described in more detail in
the following sections. The VR environment consists of multiple instances of
these types of modules.
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7.1 The VR Station

The VR Station is the display driver module for the user. It provides an

immersive view of the world, with remotely-driven real-time updates of the

positions and orientations of objects and subobjects in the world. Typically,

there are multiple instances of the VR Station running on separate CPUS,
each with its own graphics pipeline hardware (typically an SGI Crimson with
Reality Engine, or Onyx with Reality Engine 2). A VR Station instance is
used by a participant in the scene (with an avatar), who in our testbed
system would be a member of the intervention forces. VR Stations can also
be used by observers who have no visible representation in the simulated
world (stealth observers). The trainer’s view is of this type.

7.2 The avatar driver and tracker input

The avatar driver is based on that described in Hightower [5], modified to
accommodate placement of the right hand tracker on the gun held by the
trainee. This placement of the tracker maximizes accuracy in evaluation of
the aim of the weapon. There are also trackers on the left hand, the small of
the back, and the head. An auxiliary module acquires the tracker data and
sends it to both the avatar driver and the VR Station instance that supplies

the HMD view for the participant. There is an avatar driver instance and a
tracker input module instance for each trainee.

7.3 Communication from avatar and actors to the VR
Station

All of the VR Station instances “see” the same world, although each VR

Station can show a different view of it. Thus, the communication from the
figure drivers (avatar driver and the puppet server modules) to the VR Sta-

tion must allow this sharing. This requirement is met in the current Ethernet
implementation using multicasting of UDP datagrams.

Each VR Station instance independently loads data files that describe
the world and the figures in it. Each figure driver (avatar or actor) loads a
corresponding file that describes the part of the world that it controls. The
major output data from the figure drivers is transforms for the figure’s joints
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and placement in the world. Thus figure drivers can move the figures that

they control simultaneously in all views.

8 Summary and future work

This paper has presented VRaptor, a VR system for situational training,

that lets the trainer define and redefine scenarios during the training ses-

sion. Trainees are represented by avatars; the rest of the virtual world is

populated by virtual actors, which are under the control of trainer-defined
scripts. The scripts allow reactive behaviors, but the trainer can control the
overall scenario.

Initial feedback from potential users is promising. Future work includes

adding features and improving the trainer’s control. We want to extend the
trainer’s interface to allow selection and juxtaposition of more basic behavior

elements through icons, which would extend the trainer’s control of scripts

to a finer-grained form. For deployment in actual training, monitoring and
logging the trainee’s performance would be necessary. This would allow per-

formance review with or without the trainee present, and allow the trainer to
evaluate scenarios with respect to difficulty or need for improvement. Also,
the system could be used in planning an assault, and this monitoring capa-
bility would then be one way of accessing competing plans of attack. We
hope to eventually evaluate the VRaptor system for training effectiveness.
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task terrorist_sitting_fight (a: actor);
var i: integer;

begin
< Assume have initially action_sit_relax }
{ flashbang has already occurred, so cringe: }
choose.puppet-action( a.puppet,

action_cover-face_sit );
delay( 1.5 {sees} );
choose.puppet_target( a.puppet,

target_snl_human_l );
choose_puppet-attention_mode( a.puppet,

attn-looking );
delay( 0.25 {sees} );
choose_puppet-action( a.puppet,

action-sit-shoot );
while an_avatar_lives do

for i := 1 to num_rounds_terrorist_has
while an_avatar_lives do

begin
delay( 0.5 {sees}
actor_fires( a );

end;
choose_puppet_action( a.puppet,

);

action_sit_relax );
delay( 0.45 {sees} );
choose_puppet_attention_mode( a.puppet,

attn_alone );
end;

Figure 5: Simple Task Example
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